Método de discos y arandelas
Método de discos Si una región del plano, se hace girar al rededor de un eje paralelo al eje , de tal forma que se genera un sólido de revolución cuyas secciones transversales perpendiculares al eje de rotación, son discos con centro en el eje de revolución. Entonces el volumen del sólido esta dado por donde es el radio del disco expresado en términos de la variable de integración. En otras palabras (palabras menos coloridas), el método del disco es el proceso de encontrar el volumen de un objeto dividiendo ese objeto en muchos cilindros / discos pequeños y luego sumando los volúmenes de estos pequeños discos. El radio del cilindro está dado por una función f (x) y la altura es el cambio en x . Si encontramos el límite del volumen cuando el cambio en x llega a cero y el número de discos se acerca al infinito, entonces tendremos el volumen real del objeto y no solo una estimación. Este volumen es la anti-derivada del cuadrado de la función f ( x ) del punto a al punto b, multiplica